Veterinary Parasitology

Dr. Asif

Objective 1

Describe the various symbiotic relationships between two species of organisms

Parasitology Goals

- Learn the Life Cycles & Biology of parasites
- Learn parasite treatment and prevention <u>fundamentals</u>
 (Not Drugs)
- Learn <u>Client Education fundamentals</u>
 - What the client needs to know about cycles, biology, treatment & prevention of the common animal parasites

Definitions

- Parasitology study of parasites & parasitism
- Symbiosis any association between at least 2 different living organisms of different species
 - Host usually larger of 2 species, harbors symbiont
 - Symbiont smaller of 2 species, obtains food, and habitat from host

Types of Relationships

Relationship	Host	Symbiont
Mutualism	+	+
Commensalism	0	+
Parasitism		+
Predation	- (Death)	+

The Parasite

Location on the Host
Amount of Time on the Host
Types of Parasites

Location on the Host

Ectoparasite (Infestation)
Endoparasite (Infection)

Location on the Host

Ectoparasite

- On outside surface of body of host
- Examples fleas, mosquitoes, horse flies

Endoparasite

- Live in body of host
- Examples roundworms, whipworms, heartworms

Amount of Time on Host

Temporary
Stationary
Permanent

Temporary

- Visits host for food
- Examples
 - Ticks
 - Mosquitoes

Stationary

- Spends definite period of time in or on host
- Most parasites
- Periodic leaves host to complete

Cuterebra

Permanent

Spends entire life on host, except when

transferring to another host

- Examples
 - Ear mites
 - Lice

Types of Parasites

Incidental (Accidental) Parasite
Erratic (Aberrant) Parasite
Obligate Parasite
Facultative Parasite
Pseudoparasite

Incidental Parasite

- Accidental parasite
- Appears in unusual hosts
- Examples
 - Heartworms in man
 - Crab louse in dogs

Erratic Parasite

- Aberrant parasite
- Seen in unusual locations in hosts
- Examples
 - Heartworm in eye
 - Cuterebra in brain

Obligate Parasite

- Must lead parasitic existence
- No free-living stages
- Examples
 - Lice
 - Ear mites
 - Some mites

Facultative Parasite

- Free-living organism that can become parasitic in certain hosts
- Examples
- Chigger mite larvae (microscopic)
- Ringworm in cats, calves

Pseudoparasite

- Organisms that appear to be parasites, but are not
- Examples grain mites in fecals, pollen grains and air bubbles

The Host

Intermediate
Paratenic
Definitive (Final)
Incidental (Accidental)

Intermediate Host

- Immature (non-sexual) parasite undergoes development in this host
- Example heartworm larva in mosquito
- Control of this part of life cycle
 CRUCIAL to preventing parasite!

Paratenic Host

- Intermediate host that serves as a "transport" host for parasitic larva
- Final host must eat this host for adult parasite to develop
- Examples fleas or mice for certain tapeworms

Definitive Host

- Final host
- Harbors adult (sexually mature) parasite
- Often a carnivore (dogs & cats)
- Intermediate host carried parasite to this host

Incidental Host

- Accidental host
- Wrong host species for this parasite
- If man parasite is a zoonosis
 - Raccoon roundworms
 - Heartworms in cats.

Objective 2

Discuss types of parasitic life cycles

Life Cycles

Direct Indirect

Life Cycles Overview

- Definition
 - The entire sequence of stages in the life of a parasite, from adults of one generation to adults of the next
- Parasite may be "Species Specific"
 - Affect only 1 species of host
 - Lice species specific; fleas not
- 2 types
 - Direct life cycles
 - Indirect life cycles

Direct Life Cycles

Parasite transfers from one host to

another host of same s

- Dog to dog to dog, etc.
- No intermediate hosts
- Examples fleas, whipworms

Direct Life Cycle – Fleas

Direct Life Cycle Whipworms

Indirect Life Cycles

(Figure 1-10, page 7)

- Parasite requires at least 1 intermediate host to complete its life cycle
- Intermediate host harbors immature parasite
- Definitive host harbors adult parasite
- Examples heartworms, all tapeworms, flukes
- Client Education Best way to stop life cycle is to eliminate intermediate host

Indirect Life Cycles

Always have <u>intermediate</u> hosts

Indirect Life Cycle Tapeworms

Indirect Life Cycle – Heartworms

Parasites with Both Life Cycles

- Some parasites have both a direct as well as indirect life cycle
- Examples roundworms, hookworms

Both Direct and Indirect Life Cycles

Both Direct and Indirect Life Cycles – Hookworms

Parasite Transmission

Passive
Active
Inoculative

Passive vs. Active Transmission

- Definition how parasites transfer from one host to another
- Passive transmission
 - Parasite does not travel to host
 - Usually ingested
 - Example ascarids (roundworms)
- Active transmission
 - Parasite travels to host and/or aggressively penetrates host
 - Examples fleas, hookworm larvae

Inoculative Transmission

- Intermediate host "injects" parasite into definitive host
 - Called "<u>vector</u>"
 - Often takes blood from definitive host
 - Often has "sucking mouthparts"
 - Examples mosquitoes, ticks, fleas?

Inoculative Transmission

• Blood-suckers!

Harmful Effects of Parasites

Harmful Effects of Parasites

- Blood loss
 - Hookworms, fleas
- Hypersensitivity (allergy)
 - Flea allergy dermatitis (FAD)
 - 15% of dogs & cats
 - Heartworms? Eosinophilia as high as 20%
- Toxicity
 - Maggots

Harmful Effects of Parasites

- Secondary invasion of pathogens
 - Bacterial infections after primary disease has begun
 - Example generalized demodectic mange
- Disease transmission
 - Parasite vectors carry disease to host
- Worry
 - Horse flies in the barn

Disease Vectors

Mosquitoes

- Heartworms
- West Nile Virus
- Equine encephalitis
- Equine infectious anemia (EI/

Ticks

- Lyme disease
- Rocky mountain spotted fever

Fleas

- Feline infectious anemia?

Objective 3

Describe the Linnaean
Classification Scheme used to
name and categorize organisms

Taxonomy

Scientific Classification of Parasites

Definitions

- Taxonomy Branch of biology dealing with identifying, naming, and classifying species
- Taxon One of the groups that organisms are classified into
- Species Group of similar organisms capable of interbreeding and producing fertile offspring

Classification of Parasites

- Kingdom
 - -Phylum
 - Class
 - -Order
 »Family
 Genus
 Species

Worms!

Insects, Ticks, and Mites, Oh My!

Protozoa

Classification of Parasites

- Kingdom Protista single-celled organisms
- Kingdom Animalia
- Phylum
 - Platyhelminthes flatworms tapeworms
 - -Archelminthes nematodes
 - Arthropoda animals with exoskeleton
 - Class Crustacea no parasites here!
 - Clace Incoata flage flige lies

The Kingdoms

- Protista Single-celled organisms
 - Amoeba
 - Coccidia
 - Giardia
 - Toxoplasma
- Animalia Multi-cellular animals
 - Most parasites we will cover are here
 - Most animals are free-living, not parasitic

3 Phyla of Kingdom Animalia

- These 3 phyla have the parasites we will cover this semester
- Phylum Platyhelminthes flatworms
- Phylum Archelminthes roundworms (nematodes)
- Phylum Arthropoda arthropods
- Helminth = "worm"
- Anthelmintic wormer

Platyhelminthes – Flat Worms

- Characteristics
 - Flat

- All <u>hermaphrodites</u> need only
 1 worm to continue life cycle
- Free-living Planaria
- Parasites
 - Cestodes all tapeworms
 - Trematodes flukes

Archelminthes - Nematodes

- Characteristics
 - Round ("roundworms")
 - Separate male & female worms Need at least 1 of each sex to continue life cycle
- Examples
 - Dog & cat <u>ascarids</u> (roundworms)
 - Hookworms (<u>strongyles</u> in horses)
 - Whipworms
 - Heartworms

Arthropods

- Characteristics
 - Jointed appendages
 - Exoskeleton (made of <u>chitin</u>)
- 3 classes in this phylum
 - Class crustacea crustaceans no parasites!
 - Class arachnida arachnids
 - Class insecta insects

Class Arachnida

- Most free-living, some parasites
- Most live on land
- Characteristics
 - No wings
 - Most adults have 8 legs
- Examples
 - Spiders! © (Arachnophobia anyone?)
 - Scorpions
 - Ticks
 - Mites

Arachnids

- Spiders free-living
- Scorpions free-living
- Ticks parasites
- Mites free-living & parasites

Scientific Names of Organisms

- Composed of 2 Latin names
 - 1st name Genus
 - 2nd name species
- Genus species
 - Genus name italicized, capitalized
 - species name italicized, NOT capitalized
- If italics are not used, each name must be underlined separately

Ascarids (Roundworms)	Host Species
Toxocara canis	Dog only
Toxocara cati	Cat only
Toxascaris leonina	Dog, cat
Parascaris equorum	Horse

Hookworms	Host Species
Ancylostoma spp.	Dog, cat
Uncinaria stenocephala	Dog, cat
Strongylus vulgaris	Horse
Strongylus spp.	Horse

Whipworms	Host Species
Trichuris vulpis	Dog only
Trichuris suis	Pig

Tapeworms	Host Species
Dipylidium caninum	Dog, cat
Taenia spp.	Dog, cat
Echinococcus granulosus	Dog only
Diphyllobothrium latum	Dog, cat

Protozoa	Host Species
Isospora spp.	Dog, cat
Eimeria spp.	Dog, cat
Giardia spp.	All animals, man
Toxoplasma gondii	Cat
Trichomonas spp.	Dog, horse

External Parasites - Class Insecta

- Fleas
 - Ctenocephalides canis
 - Ctenocephalides felis
- Lice
- Flies
 - Mosquitoes
 - Horse flies, deer flies, stable flies
 - Maggots
 - Cuterebra larvae
 - Screwworms

External Parasites - Class Arachnida

- Ticks
 - Rhipacephalus sanguineus
 - Amblyomma americana
 - Ixodes spp. Lyme disease tick
 - Dermacentor spp.
- Spiders
 - NO SPIDERS ARE EVER PARASITES!!! ☺

External Parasites - Class Arachnida

Mites		
Otodectes cynotis	Ear mite	
Demodex spp.	Demodectic mange mite	
Sarcoptes scabiei	Sarcoptic mange mite	
Cheyletiella spp.	Walking dandruff mite	
Notoedres cati	Cat mange mite	
Trombicula alfreddugesi	Chigger mite	

Parasites of Other Organ Systems

Dioctophyma renale	Giant kidney worm
Capillaria plica	Bladder worm
Capillaria aerophila	Lung worm
Paragonamus kellikoti	Lung fluke
Spirocerca lupi	Esophagus worm
Physaloptera rara	Stomach worm
Linguatula serrata	Nasal cavity

Objective 4

Identify laboratory procedures used to diagnose parasites

Your Domain as a Clinical Laboratory Technician

Common Laboratory Tests

Fecal Exams
Blood Testing
Skin Tests

Parasite Control Fundamentals at CAPC website

- Annual/semi-annual fecal exams
- Fresh daily stool pickup
- Sanitation & good personal hygiene
- Annual heartworm checks/year-round prevention
- Year-round flea/tick control if needed
- Zoonosis concerns